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Abstract
Density functional and quantum Monte Carlo methods are used to examine the
behaviour of the many-electron localization length near band insulator-to-metal
transitions in various one- and two-dimensional model systems. The many-
electron localization length is infinite in metals and finite in insulators, and is
normally assumed to diverge as an insulator-to-metal transition is approached
from the insulating side. Our results show that this is not the case: the band
insulator-to-metal transition is normally first order and not associated with a
diverging length scale. We also identify examples where the localization length
diverges but the system is insulating on both sides of the divergence. The
usefulness of the localization length as an indicator of the approach of an
insulator-to-metal transition is therefore limited. A comparison of our quantum
Monte Carlo and density functional results allows us to draw some general
conclusions about the effect of correlation on localization.

1. Introduction

The question of whether the many-body wavefunction of a crystalline solid represents a metal
or an insulator is easily answered for the determinantal wavefunctions used in one-electron
band theory: if the density of one-electron states is finite at the Fermi level, the system is a
metal; if not, it is an insulator. An alternative approach notes that one can apply a unitary
transformation to the determinant of Bloch functions of an insulator to obtain an equivalent
determinant of exponentially localized [1] one-electron Wannier functions. The exponential
localization of the Wannier functions implies a corresponding exponential localization of the
one-electron density matrix ρ(r, r′) as a function of r − r′, and it has been shown [2] that any
system for which the second moment of ρ(r, r′) is finite must be insulating.

In the one-electron theory of disordered systems, the energy eigenfunctions may be
localized and a finite density of states at the Fermi level need not imply conducting behaviour,
but the more general idea that insulating behaviour results from wavefunction localization
survives. In fact, more than forty years ago, Kohn [3] argued that all metal to insulator
transitions, even those in strongly correlated interacting solids, are accompanied by a specific
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form of localization of the many-electron wavefunction �(r1, r2, . . . , rN ) in the configuration
space of d N-dimensional vectors of the form (r1, r2, . . . , rN ), where ri is the d-dimensional
position vector of electron i .

During the past decade, Kohn’s approach has been substantially advanced by the
development of the Berry-phase theory of polarization and localization [4–7], which has
allowed polarizations [8, 9], localization lengths [6–8] and dielectric constants [10] to be
calculated in extended systems for the first time. These developments emerged from two tracks:
studies of the properties and localization of Wannier functions [11]; and studies of polarization
and the response of extended systems to electric fields [4, 5, 12]. Both tracks led to similar
conclusions about how to calculate the many-body localization length that determines whether
a material is metallic or insulating.

These ideas were generalized and put on a firmer foundation by the work of Souza,
Wilkens, and Martin [7], who used a generating function approach to provide expressions
for polarizations and localization lengths in terms of the centre of mass of the many-body
wavefunction. Under certain assumptions about the form of the many-body wavefunction,
they also showed that their expressions agreed with those proposed by Resta and Sorella [6],
and provided a link between the localization length and the conductivity as expressed by
the Kubo formula, and thus between the localization length and the energy gap. Finally,
they introduced the concept of a many-body Wannier function and linked it to Kohn’s
earlier suggestion [3] that ‘disconnectedness’, identified as localization of the many-body
wavefunction in configuration space, was an essential characteristic of the wavefunction of
any insulator.

To date, there have been few applications of these ideas in a many-body context, mainly
because it is difficult to carry out accurate many-body calculations for the very large system
sizes required. Among the exceptions are two quantum Monte Carlo (QMC) studies, one of
phase transitions in the one-dimensional ionic Hubbard model [13] and one of the dielectric
response of periodic systems [9]. In the latter, it was observed that the inclusion of many-
body correlation effects dramatically affected the value of the polarizability and improved its
convergence with system size by decreasing the localization length, a conclusion supported
by calculations in which self-interaction corrections were included in calculations of Born
effective charges [14].

Section 2 of this article shows how the standard formulae for polarization and localization
in many-body systems may be derived by considering the centre of mass and spread
of the many-body Wannier functions. The many-body version of the modern theory of
polarization is thus formulated in a manner analogous to King-Smith and Vanderbilt’s original
formulation [4, 5] of the non-interacting version. This is followed in section 3 by a discussion
of the assumption of short-ranged correlation required to evaluate these formulae in interacting
many-electron systems. Section 4 looks at the evaluation of the localization length in
systems of independent particles and addresses the relatively slow convergence with system
size. In section 5, we examine the behaviour of a series of simple models and describe the
circumstances under which the approach of an insulator-to-metal transition is accompanied by
a divergence of the localization length. Although finite and infinite values of the localization
length distinguish metals from insulators, our density-functional theory (DFT) and QMC results
show that the approach of an insulator-to-metal transition is rarely associated with a diverging
localization length. We also show that the symmetry properties of the bands that cross at the
transition strongly influence whether or not a divergence is seen. Appendix A discusses the
evaluation of the localization length of a Slater determinant of orbitals expressed in a plane-
wave basis and appendix B describes the behaviour of the statistical error associated with a
measurement of the localization length in a QMC simulation.
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2. Localization lengths and many-body Wannier functions

2.1. Twisted boundary conditions

Because of the difficulty of dealing with wavefunctions of infinite numbers of variables, many-
electron simulation methods such as QMC are always applied to finite systems and use periodic
boundary conditions. We consider an N-electron simulation cell (preferably many times larger
than the unit cell of the underlying crystal) with sides of length A1, . . ., Ad , where d is the
spatial dimension. For simplicity, we assume that the simulation-cell lattice vectors A1, . . .,
Ad are orthogonal; the generalization to non-orthogonal simulation cells is straightforward but
complicates the notation.

The periodic boundary conditions are imposed by insisting that the many-electron
Hamiltonian be strictly periodic across the simulation cell. In other words, given any lattice
vector R = (n1 A1, . . . , nd Ad), where n1, . . ., nd are integers, we insist that

Ĥ (r1, . . . , ri + R, . . . , rN ) = Ĥ (r1, . . . , ri , . . . , rN ). (1)

Real crystals do not possess this symmetry because the Coulomb interaction is not periodic, so
we replace the Coulomb interaction with the periodic Ewald interaction. The finite size errors
resulting from this replacement reduce as the simulation cell is made larger and the properties
of the artificially periodic system tend to those of a real crystal.

Significantly, it is not necessary to insist that the N-electron wavefunction is periodic over
the same simulation cell as the Hamiltonian. One can choose to solve the Schrödinger equation
for � within a larger ‘supercell’ with sides ˜Aα = LαAα (α = 1, 2, . . . , d), where the Lα
are positive integers and the wavefunction satisfies periodic boundary conditions across the
supercell only. It is straightforward to show [16] that the energy eigenfunctions obtained via
this procedure satisfy a version of Bloch’s theorem,

�k(r1, . . . , ri + R, . . . , rN ) = eik·R�k(r1, . . . , ri , . . . , rN ), (2)

and may be labelled by a Bloch wavevector k = (m1δk1, . . . ,mdδkd), where m1, . . ., md are
integers and δkα = 2π/˜Aα . The phase factor eik·R is unchanged if the integer mα is replaced by
mα + Lα , implying that the Bloch wavevector k may be chosen to lie in the first simulation-cell
Brillouin zone. The total number Nk = L1 L2 . . . Ld of distinct Bloch wavevectors is then equal
to the number of simulation cells in the supercell. Many-particle Bloch wavefunctions such as
�k are often said to obey ‘twisted boundary conditions’ and k is called the twist vector.

The antisymmetry of the many-fermion wavefunction ensures that the twist vector k is the
same for every electron and so �k can be divided into a simulation-cell periodic part and a
phase factor as

�k(r1, . . . , rN ) = eik·X�k(r1, . . . , rN ), (3)

where

X =
N

∑

i=1

ri . (4)

In finite systems, X̂ = ∑N
i=1 r̂i is proportional to the operator for the electronic dipole moment

and we shall often call it the dipole operator from now on.
As in one-electron band theory, the wavefunction �k is only determined up to an arbitrary

k-dependent phase. For simplicity, we restrict our consideration to gauges in which �k is a
differentiable function of k and �k+G = �k for all simulation-cell reciprocal lattice vectors G.
The most general gauge transformation preserving these properties takes the form

�k → eiφ(k)�k, (5)
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where φ(k) = k · R − β(k), R is any simulation-cell lattice vector and β(k) is any periodic
differentiable function of k.

In one-electron theory, the use of Bloch’s theorem reduces the solution of the Schrödinger
equation for an infinite periodic crystal to the solution within a single unit cell subject to
twisted boundary conditions. By averaging over twists (integrating over the Brillouin zone),
the results for the infinite crystal are obtained exactly. The many-body version of Bloch’s
theorem described here is less powerful. Although the Schrödinger equation is solved within
the supercell, the wavefunctions �k(r1, . . . , rN ) depend on the coordinates of the N electrons
in one simulation cell only: the Hamiltonian is periodically repeated but the number of particles
is not increased correspondingly. Averaging over twists reduces the finite size errors in most
cases but does not yield exact results for an infinite system.

The main reason for using twisted boundary conditions in many-electron theory is that
the sensitivity of the system to the choice of twist vector provides useful information about
its polarizability and conductivity. According to [17], the change in electronic polarization in
response to some adiabatic change of Hamiltonian is equal to the change in the quantity

Pel = iqe

(2π)3

∫

dk〈�k|∂k�k〉, (6)

where ∂k = (∂k1 , . . . , ∂kd ) = (∂/∂k1, . . . , ∂/∂kd) is the gradient operator in k space and qe

is the electronic charge. In [7], Souza, Wilkens and Martin showed using the fluctuation-
dissipation theorem that the squared localization length in the α direction, defined by

〈r 2
α〉c = −1

NVk

∫

dk[〈�k|∂2
kα�k〉 − 〈�k|∂kα�k〉〈�k|∂kα�k〉], (7)

where Vk = (2π)3/V is the volume of the simulation-cell Brillouin zone, is proportional to
a frequency integral of the conductivity tensor. In particular, the system is insulating if 〈r 2

α〉c

is finite and metallic if 〈r 2
α〉c is infinite. The aim of the rest of this section is to provide a

physical interpretation of these results by showing how Pel and 〈r 2
α〉c are related to the centres

and quadratic spreads of the many-electron Wannier functions. The many-electron theory of
polarization and localization is thus expressed in the same language as the one-electron theory
developed by King-Smith and Vanderbilt [4, 5].

2.2. Many-body Wannier functions

Assuming that the system is insulating for all choices of twist vector k, so that the ground state
�k at each k is unique and clearly separated in energy from the excited states at that k, we can
use the Bloch-like form of equation (3) to define a set of many-body Wannier functions

WR = 1√
Nk

∑

k

e−ik·R�k. (8)

Both �k and WR are normalized over the d-dimensional supercell of volume Nk V , with
normalization integrals carried out over the corresponding d N-dimensional configuration space
of volume (Nk V )N . As explained by Souza, Wilkens and Martin [7], WR(r1, r2, . . . , rN ) is
localized in the d-dimensional space of values of X = r1 + . . .+ rN but not in the remaining
d N − d dimensions of the configuration space. If one starts at a configuration-space point
(r1, . . . , rN ) near the peak of WR=0 and shifts each electron coordinate by a different lattice
vector Ri , the final point will be near the peak of WR, where R = ∑

i Ri .
As in the case of single-particle Wannier functions, gauge transformations of the type

discussed in section 2.1 affect the position and spread of the many-electron Wannier functions.
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Fortunately, it is well established that single-particle Wannier functions have various gauge-
invariant properties, including the minimum possible spread. As we see below, many-body
Wannier functions, localized in X, behave in the same way.

2.3. Wannier centres and polarization

One way to find the centre of a many-body Wannier function would be to calculate its first
moment 〈W0|X̂|W0〉. If the dipole operator X̂ is applied to a function obeying periodic boundary
conditions, however, the result is not periodic and does not lie in the Hilbert space of the
periodic system. As emphasized by Resta [20], this means that X̂ is not an admissible operator
in periodic systems. To circumvent this problem, consider instead the operator

Q̂α = sin(δkα X̂α)

δkα
= sin(δkα · X̂)

δkα
, (9)

where δkα = (0, . . . , δkα, . . . 0) is a vector of length δkα in the α direction. When applied
to a state such as W0, which we assume is sharply peaked near X = 0, the action of Q̂α is
approximately that of X̂α . Unlike X̂α, however, Q̂α is periodic across the supercell.

Using the definition of the Wannier function, equation (8), we find that

Q̂α |W0〉 = 1

δkα
√

Nk

(

eiδkα ·X̂ − e−iδkα ·X̂

2i

)

∑

k

|�k〉 = −i

2δkα
√

Nk

(

eiδkα ·X̂
∑

k

∣

∣�k−δkα
〉

− e−iδkα ·X̂ ∑

k

∣

∣�k+δkα
〉

)

= i√
Nk

∑

k

eik·X̂
(

∣

∣�k+δkα
〉 − ∣

∣�k−δkα
〉

2δkα

)

= i√
Nk

∑

k

eik·X̂�kα |�k〉 , (10)

where �kα is a discretized derivative with respect to kα and the replacement of
∑

k |�k〉 by
∑

k

∣

∣�k±δkα
〉

was possible because |�k〉 is a periodic function of k.

The expectation value of Q̂α in the many-body Wannier function centred on R = 0 is
given by

〈W0|Q̂α|W0〉 = i

Nk

∑

k′

∑

k

〈�k′ |e−ik′·X̂eik·X̂|�kα�k〉. (11)

Both�k′ and�kα�k have the periodicity of the simulation cell and may be represented as d N-
dimensional Fourier series involving simulation-cell reciprocal lattice vectors only. Since k and
k′ lie in the simulation-cell Brillouin zone and hence cannot differ by a non-zero simulation-cell
reciprocal lattice vector, it follows that every matrix element with k �= k′ vanishes, leaving

〈W0|Q̂α|W0〉 = i

Nk

∑

k

〈�k|�kα�k〉. (12)

In the limit of very large supercells, and assuming a choice of gauge for which �k is a smooth
function of k, this becomes

〈W0|Q̂α|W0〉 = i

Vk

∫

dk 〈�k|∂kα�k〉, (13)

where Vk = (2π)3/V is the volume of the simulation-cell Brillouin zone. The one-electron
version of this result was originally derived by Blount [15]. The matrix elements in equa-
tion (13) are evaluated by integration over the region of configuration space corresponding to
the supercell, with both W0 and �k normalized to unity over that region. Since �k is periodic,
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however, the�k matrix element may also be evaluated by integration over the smaller region of
configuration space corresponding to one simulation cell, as long as �k is normalized to unity
over the smaller region instead.

Comparing equation (13) with (6), we see that (Pel)α = qe〈W0|Q̂α|W0〉/V . The change
in polarization in response to some adiabatic change of Hamiltonian may therefore be obtained
from the change in the first moment of the many-body Wannier function W0, in analogy
with the non-interacting case. A general periodic gauge transformation of the type defined
in equation (5) shifts the right-hand side of equation (13) by the lattice vector R, corresponding
to a shift in the polarization by some integer multiple of the quantum of polarization [4, 5].

2.4. The spread functional and the localization length

A similar approach may be used to find the spread of the Wannier functions, from which we
can calculate the localization length. Proceeding as above, we obtain

Q̂α Q̂β |W0〉 = − 1√
Nk

∑

k

eik·X�kα�kβ |�k〉 , (14)

and hence the large supercell limit of the tensor spread functional

�αβ = 〈W0| Q̂α Q̂β |W0〉 − 〈W0| Q̂α |W0〉 〈W0| Q̂β |W0〉 (15)

is

�αβ = −
(

∫

dk

Vk
〈�k|∂kα ∂kβ�k〉 −

∫

dk

Vk

∫

dk′

Vk
〈�k|∂kα�k〉〈�k′ |∂k′

β
�k′ 〉

)

. (16)

Following [11], we split the spread functional into a gauge invariant part �I and a gauge-
dependent part ˜�, simply by choosing�I to include the terms in which the phase eiφ(k) cancels:

� = �I + ˜�, (17)

where

(�I )αβ = −
∫

dk
Vk

(

〈�k|∂kα ∂kβ�k〉 − 〈�k|∂kα�k〉〈�k|∂kβ�k〉
)

(18)

and

˜�αβ =
∫

dk

Vk

∫

dk′

Vk
〈�k|∂kα�k〉 × (〈�k′ |∂k′

β
�k′ 〉 − 〈�k|∂kβ�k〉). (19)

Thus we see that (�I )αα = N〈r 2
α〉c, where 〈r 2

α〉c is the squared localization length in the α direc-
tion as defined in equation (7). Furthermore, by re-expressing the many-body Bloch functions
in terms of the Wannier functions, the gauge-dependent part of the functional may be written as

˜�αβ =
∑

R�=0

〈

WR|Q̂α|W0

〉 〈

W0|Q̂β |WR

〉

. (20)

If the many-body Wannier functions of an insulator are taken as ‘disconnected’ Kohn’s func-
tions, it must be possible to choose a gauge in which those localized on different vectors R are
non-overlapping in configuration space when the simulation cell is large enough. The gauge-
dependent part of the spread therefore tends to zero with increasing simulation-cell size [7].
This allows us to limit our consideration to the gauge-invariant part �I .
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3. Evaluation of the spread functional

3.1. Discretization of the twist averaging

Before �I can be evaluated numerically, the integral over k must be discretized again. We use
the identity ∂2

qα
ln f = 1

f ∂
2
qα

f − 1
f 2 (∂qα f )2 with f (q) = 〈�k|�k+q〉 to rewrite (�I )αα as

(�I )αα = − 1

Vk

[∫

dk ∂2
qα ln〈�k|�k+q〉

]

q=0

. (21)

The discretized equivalent of this expression for the finite supercell containing Nk =
L1 . . . Ld simulation cells is

(�I )αα = − 1

Vk

∑

k

Vk

Nk

1

δk2
α

[

ln
〈

�k|�k+δkα
〉 + ln

〈

�k|�k−δkα
〉 − 2 ln 〈�k|�k〉

]

, (22)

where ∂2
qα f (q) has been approximated as ( f (q + δkα) + f (q − δkα) − 2 f (q))/(δkα)2. The

final term in equation (22) is zero if�k is normalized to unity. The periodicity of the summand
over the simulation-cell Brillouin zone allows us to make the substitution k → k + δkα in the
second term, which changes it from 〈�k|�k−δkα 〉 to 〈�k+δkα |�k〉, giving

(�I )αα = − 1

Nk

∑

k

1

δk2
α

ln |〈�k|�k+δkα 〉|2. (23)

3.2. Ansatz wavefunction for a larger system

If one can solve the many-electron Schrödinger equation for a fine enough grid of twists and
evaluate the overlaps of the wavefunctions at neighbouring twist vectors, equation (23) can be
used directly. In other situations, however, it would be more convenient to be able to calculate
the localization length from a single expectation value evaluated over a larger system. In this
section, we use a variation of the argument of [6, 7] to show how, by means of an ansatz about
the form of the wavefunction for the larger system, the localization length can be related to a
single expectation value of the ‘many-body phase operator’ introduced by Resta [20].

In section 2.1, we introduced a supercell containing Nk = L1 L2 . . . Ld simulation cells.
The Schrödinger equation for the N electrons in one simulation cell,

Ĥ (r1, . . . , rN )�(r1, . . . , rN ) = E�(r1, . . . , rN ), (24)

was then solved subject to periodic boundary conditions within this larger region,
corresponding to twisted boundary conditions across the smaller simulation cell. The resulting
N-electron energy eigenfunctions were shown to satisfy a version of Bloch’s theorem, so
enabling us to define N-electron Wannier functions WR(r1, . . . , rN ), which were identified
as the ‘disconnected’ functions introduced by Kohn [3] and are believed to be exponentially
localized in insulators. More precisely, WR(r1, . . . , rN ) is localized in that region of the
d N-dimensional configuration space where the d-dimensional vector X = r1 + . . . + rN

is close to R. The exponential localization implies that the Hamiltonian matrix elements
between neighbouring Wannier functions are exponentially small and hence that the ground
state energy of the simulation cell is exponentially insensitive to the choice of twist vector k.
This insensitivity to boundary conditions is a defining characteristic of the insulating state.

The supercell introduced in section 2.1 is mathematically convenient but should not
be viewed as a physical system; in particular, it contains the same number of electrons,
N , as the smaller simulation cell. Suppose, however, that we now introduce a physical
supercell system containing Nk simulation cells and ˜N = Nk N electrons subject to periodic

7
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boundary conditions. The wavefunction ˜�(r1, . . . , r
˜N ) of this physical supercell is unknown,

but the availability of Nk N-electron Bloch functions �R and the supposition that electron
correlation in an insulator is a short ranged effect suggests an appealing Hartree–Fock-like
ansatz. Labelling the Nk simulation cells using an integer index c = 1, . . . , Nk , we write, as
in [6, 7],

˜�(r1, . . . , r
˜N ) = Â

Nk
∏

k

�k(rN(c−1)+1, . . . rN(c−1)+N ). (25)

where Â is the antisymmetrization operator. The ansatz assumes that the ˜N = Nk N electrons in
the supercell correlate in groups of N at a time, so that ˜� can be written as an antisymmetrized
product of Nk different N-electron wavefunctions. If the Hamiltonian of the physical supercell
were a sum of terms involving each group of N electrons separately, as in a non-interacting
system, ˜� would be the exact ground state. In an interacting system ˜� is clearly inexact,
but since each N-electron wavefunction �k was originally an allowable periodic wavefunction
for a smaller section of the solid, we are effectively requiring that beyond some range L, the
difference between the interactions between genuinely distinguishable electrons and between
periodic copies of the same electron becomes negligible. As the number of electrons N in the
simulation cell and the cell volume V increase, the importance of correlations of longer range
than the size of the simulation cell should decrease and ˜� should become more accurate.

As in [6, 7], we evaluate the expectation value

zN = 〈˜�|e−iδkα ·˜X|˜�〉 (26)

of the ‘many-body phase operator’ e−iδkα ·˜X in this ansatz wavefunction, where ˜X = r1 +
. . . + rNk N . The overlap between two Slater determinants is the determinant of the matrix of
overlaps between the ‘orbitals’, which here are N-electron wavefunctions labelled by a Bloch
wavevector k. This remains true even in this more complex many-body case because any
term in the antisymmetrization in which the same electron coordinate appears with different
boundary conditions in the bra to those it has in the ket will vanish upon integration. We can
thus write the expectation value as:

〈

˜�

∣

∣

∣e−iδkα ·˜X
∣

∣

∣

˜�
〉

=
Nk
∏

k

〈

�k|�k+δkα
〉

. (27)

Comparing this result with equation (23), we see that

(�I )αα = −1

Nk(δkα)2
ln

∣

∣〈˜�|e−iδkα ·˜X|˜�〉∣∣2
, (28)

and hence that the localization length 〈r 2
α〉c = (�I )αα/N is given by

〈r 2
α〉c = −1

˜N (δkα)2
ln

∣

∣

〈

˜�
∣

∣e−iδkα ·˜X∣

∣˜�
〉∣

∣

2
. (29)

This is Resta and Sorella’s [6] result for the square of the localization length, or quadratic
spread, in the α direction.

Equation (29) was originally obtained by supposing that the electron density could be
decomposed into a sum of localized components, Fourier transforming and applying the ansatz
described above to produce a large enough system for convergence. This melds well with the
proposed identification [7] of many-body Wannier functions with the ‘disconnected’ parts of
the many-body wavefunction hypothesized by Kohn [3]. Since the disconnected parts are non-
overlapping in the configuration space of the electron coordinates, each can be considered as
providing a separate contribution to the electron density in real space.

8
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Figure 1. Convergence of the localization length (measured in Hartree atomic units) for a weakly
bound but insulating array of quantum dots as a function of the size M of the M × M k-point grid.
The lines join points calculated using the same supercell twist vector ˜k. When the energy gap is
small, convergence with supercell size Ma is very slow, especially for ˜k = 0. In this particular
system, the choice ˜k = π/(2Ma) yields the most rapid convergence.

4. Convergence of the localization length with system size

Previous studies [11, 6, 2] of electron localization in one-electron theories have noted the
relatively slow and monotonically increasing convergence of the localization length as a
function of system size. Sgiarovello, Peressi and Resta [2] examined the localization length
〈x2〉c in GaAs, and Marzari and Vanderbilt [11] the spread � of the maximally localized
Wannier functions. Both came to similar conclusions.

The slow convergence can be explained by reference to equation (29) and consideration of
the ansatz required to derive it. For the localization length to be well converged, the k-point
sampling must be dense enough to sample the variation of the Bloch functions with k; the finite
difference approximation used in equation (23) is then a good approximation to the continuous
k derivative in equation (21). Failure to converge with respect to δkα will appear as a variation
of the localization length with the number of k points in the grid.

In one-electron theory, the convergence of Brillouin zone integrals may often be improved
by shifting the entire grid of k vectors by a small amount ˜k relative to 
. This corresponds
to changing the strict periodic boundary conditions applied across the supercell to boundary
conditions incorporating a twist vector ˜k, which must be the same for all the orbitals. A
supercell twist ˜k = δkα shifts every k vector to one of its neighbours and is thus equivalent
to a zero twist, implying that ˜k may be chosen to lie within the supercell Brillouin zone. The
variation of the localization length with ˜k has not been investigated previously.

To examine the convergence of the localization length, a two-dimensional array of potential
wells capable of exhibiting a wide range of bandstructures was studied. The external potential
consisted of a square array of Gaussian wells or ‘dots’ of the form V (r) = −Vd exp(−|r −
rc|2/ρ2), where rc sets the centre of the dot (in the centre of the unit cell), ρ defines the
width of the Gaussian and Vd the dot depth. Neighbouring dots were separated by a distance
a (the side of the unit cell, which is the same as the simulation cell in this case). The one-
electron properties were treated within the framework of self-consistent density functional
theory using the two-dimensional local density approximation from [18] and the wavefunctions
were expressed in a basis of two-dimensional plane-waves limited by a cutoff energy Ecut,
which was increased to convergence. The Bloch functions were calculated on an equally spaced
grid of M × M k points within the Brillouin zone.

9



J. Phys.: Condens. Matter 19 (2007) 506212 N D M Hine and W M C Foulkes

Figure 1 shows the localization length obtained by calculating zN (see equation (26)) for a
weakly bound array of dots, each containing six electrons and thus three filled bands of doubly-
occupied states, for a range of M×M k-point grids offset by˜k from the 
 point. Here and in the
rest of this paper, numerical results are expressed in atomic units, with lengths measured in Bohr
radii and energies in Hartrees. Details of the method used to evaluate zN from the plane-wave
representation of the orbitals are given in appendix A. The parameters chosen were ρ = 3 and
a = 10, with Vd tuned to a value only just yielding an insulating state with the first three bands
fully occupied. If Vd is reduced further, the energy of the third band at k = ( πa , 0) becomes
higher than that of the fourth band at k = (0, 0) and the system becomes metallic. The smallest
energy gap is therefore indirect and the localization length might be expected to be only weakly
dependent on the position of the grid, especially given that the total DFT energy is converged
to five significant figures for M � 5. However, as seen in figure 1, in this situation, chosen
for its proximity to a transition, the convergence is slow and a 20 × 20 supercell is required to
converge 〈x2〉c to 1%. A k-point grid centred on 
 is seen to yield relatively slow convergence,
in agreement with previous studies that have shown the same behaviour for total energies [16].
In this particular system, the most rapid convergence is achieved when ˜k = π/(2Ma).

5. Behaviour over metal insulator transitions

Previous work [6] has indicated that the localization length correctly describes the various
phases of a one-dimensional system of correlated electrons displaying a band insulator to Mott
insulator transition with a metallic phase at the transition: a divergence is clearly observed
in 〈x2〉c at sufficiently large system sizes. Given that the localization of Wannier functions is
closely related to the energy gap and that the localization length of a metal in band theory is
always infinite, it might be supposed that the localization length would in general diverge as
a metal–insulator transition is approached from the insulating side. As we shall show by a
number of examples, however, this is not the case: the presence or absence of a divergence in
one-electron theory depends on the nature of the bands that are crossing. The same behaviour
is observed in many-electron quantum Monte Carlo simulations using a Slater–Jastrow trial
function containing a Slater determinant of single-particle orbitals from band theory. To
examine the behaviour of the localization length in a range of different situations, we study
different arrangements of the two-dimensional quantum dot system introduced in section 4.

5.1. Single dots in a quasi-one-dimensional chain

In this arrangement, the two-dimensional periodic array of dots is made quasi-one-dimensional
by effectively isolating adjacent one-dimensional chains of dots. The unit cell is widened in
the y direction and a strong barrier potential is introduced to separate adjacent unit cells in
that direction. Every point on the k-space grid used for the Brillouin zone integration has
ky = 0, with equally spaced values of kx . The simplicity of the one-dimensional bandstructure
produced by this arrangement makes it easy to distinguish the effect of the symmetry properties
of the Bloch functions on the behaviour of the localization tensor near the insulator-to-metal
transition.

The lowest three eigenfunctions of an isolated dot that is not symmetric in the x and y
directions can be classified as s-like, px -like and py-like: the s-like functions are nodeless, while
the px - and py-like functions have nodes along the y- and x-axes, respectively, and change sign
under reflections in those axes. The s- and px -like orbitals of a chain of dots oriented along
the x-axis mix to form hybrid bands, but the py-like orbitals mix only with each other and
form a completely separate band. By varying the strengths of the confinement in the x- and y-
directions independently, the py-like band can be shifted relative to this and px bands. Starting
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Figure 2. One-dimensional chain of four-electron dots: (a) energy bands E(kx ) just before band
crossing. Topmost flat band is py -like, middle is px -like, lowest is s-like. (b) Energy bands E(kx )

shortly after transition. (c) Localization length 〈x2〉c and inverse direct energy gap 1/(2Eg) to
lowest unoccupied state as ω is reduced.

from an insulating system with only this and px bands occupied, this makes it possible to lower
the energy of the py band until a band insulator-to-metal transition occurs.

We model this arrangement with a unit cell of size a×b and an asymmetric quartic potential
of the form:

V (x, y) = 1

2
ω2

x

(

(x − a/2)2 − 2

a2
(x − a/2)4

)

+ 1

2
ω2

y

(

(y − b/2)2 − 2

b2
(y − b/2)4

)

.

(30)

By setting ωy > ωx and b > a, we ensure there is an enormous barrier in the y direction,
increasing the energy of the py band and creating a gap between the py band and the two s
and px bands. Then, filling up the s and px bands, the Kohn–Sham equations are solved self-
consistently for gradually lower values of ωy until the upper py band falls to meet the higher of
the s and px bands at k = 0 and the energy gap reduces to zero (see figure 2(a)). Because, by
symmetry, there can be no matrix elements between states in the crossing bands, they cannot
hybridize and the upper band has no effect on the lower until the moment at which they cross,
at which point the lower band is no longer filled and the localization length becomes infinite.
Beyond the transition, the bands pass straight through each other, remaining degenerate at the
Fermi energy. Although at any k-point on the sampling grid the lowest three eigenvalues are
occupied, the uppermost filled ‘band’ is in fact two separate bands overlapping; the matrix
element 〈unkx |un(kx +δkx )〉 of the periodic parts of the Bloch functions of the highest occupied
states at the k-points either side of the crossing point therefore vanishes, yielding an infinite
〈x2〉c . (See appendix A for details of the calculation of zN in non-interacting systems.) In
this case, therefore, 〈x2〉c gives no information about the onset of a metal–insulator transition
from the insulating side. Figure 2(c) shows the localization length in the x direction as the y
confinement is reduced. The value of 〈x2〉c falls slightly as the eigenfunctions spread out more
along y, but because the uppermost unoccupied band does not influence the band below, there
is no sign of the transition until it happens.

On the other hand, if instead we fill the three lowest bands and adjust ωx and ωy until
the top of the px band touches the next band up (which has the same reflection symmetry as
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Figure 3. One-dimensional chain of six-electron dots: (a) energy bands E(kx ) just before band
crossing; (b) energy bands E(kx ) shortly after transition; (c) localization length 〈x2〉c and inverse
direct energy gap to lowest unoccupied state 1/(2Eg) as ω is reduced.

px ), the states that become degenerate at the band crossing have the same symmetry under
reflection in the x-axis. When kx is exactly zero, the crossing bands have different y-reflection
symmetries and cannot mix, but they hybridize and repel each other for other values of kx .
Figures 3(a) and (b) show the lowest four bands just as the bands touch and shortly after, as ωx

is reduced. The system is never truly metallic, although the gap becomes arbitrarily small at
kx = 0. Nevertheless, the rapidly changing nature of the band with kx means that the overlap
integrals 〈unkx |un(kx +δkx )〉 become very small around kx = 0, yielding a spike in the localization
length near the ‘transition’, as shown in figure 3(c).

A simple one-dimensional tight-binding Hamiltonian that models this situation can be
constructed by considering only the highest occupied and lowest unoccupied bands before
and after the hybridization. The final eigenstates ψik(x) = eikx uik(x) for i = 1, 2 are
constructed from a linear combination of basis functions χik(x) which are not eigenstates of
the Hamiltonian themselves but have a Bloch-like form with orthogonal periodic parts φik :

χik(x) = φik(x)e
ikx . (31)

When expressed in the basis of the these functions the Hamiltonian matrix for small values of
k, must, to produce the system described above, take the form (for an appropriate choice of
external potential):

Ĥ =
(

�+ αk2 
k2


k2 −�− βk2

)

, (32)

where α and β describe the curvature of the uncoupled Bloch bands and 
 the matrix element
between them. Diagonalizing this Hamiltonian gives the eigenvalues

ε± = (α − β)

2
k2 ±

√

(

(α + β)

2
k2 +�

)2

+ 
2k4. (33)

This shows that when � > 0, the two bands are separated by a direct band gap of 2� at k = 0.
As the value of � reduces, the band gap also reduces. The two bands touch briefly when
� = 0, after which, as � becomes negative, they hybridize and repel in the manner shown in
figure 3(b).
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Diagonalizing the Hamiltonian also yields the eigenvectors

c±(k) = 1
√

1 + |p±(k)|2
[

p±(k), 1
]

, (34)

where

p±(k) =
(

α + β

2

+ �


k2

)

±
√

(

α + β

2

+ �


k2

)2

+ 1. (35)

The elements of the eigenvectors are the components of the periodic parts u±
k of the Bloch

eigenstates ψ±
k along the basis functions φ1k(x) and φ2k(x):

u±
k (x) = c±

1 (k)φ1k(x)+ c±
2 (k)φ2k(x). (36)

Here we make the approximation that the dominant contribution to the localization length
comes from the variation of the eigenvectors with k rather than the basis functions themselves.
This is equivalent to neglecting the ∂φik

∂k terms in ∂uik
∂k . This will inevitably become a valid

approximation as� → 0 as the orbitals φik are largely independent of� whereas the functions
p±(k) vary very rapidly with it around k = 0.

Only the lower state is occupied, so substituting the expression for the periodic part u−
k (x)

of the occupied eigenfunction ψ−
k (x) into equation (18) yields, after some algebra,

〈x2〉c = a

2π

∫ π/a

−π/a
1

(1 + (p−(k))2)2

(

∂p−(k)
∂k

)2

dk. (37)

For fixed values of α, β and 
, the scaling behaviour with the gap parameter�may be extracted
by changing variables to u = �/k2. Noting that the integral is symmetric about k = 0, we
obtain

〈x2〉c = 2a

π
√
�

∫ ∞

�a2/π2

u3/2
(

∂p−(u)
∂u

)2

(1 + (p−(u))2)2
du. (38)

Hence, for small enough values of the gap parameter �, since the integrand does not diverge
as u → 0, the quadratic spread 〈x2〉c ∝ �−1/2. This is roughly consistent with the behaviour
seen in figure 3. However, because of finite size effects and convergence issues, it proves
difficult to obtain enough data close enough to the point where the gap closes to determine if
this relationship holds accurately. Additionally, there will be a constant term present due to the
variation of the φik terms with k that will obscure this scaling behaviour until it is negligible
compared to the relevant effect.

5.2. Single dots in a two-dimensional array

This arrangement restores the two-dimensional symmetry and returns to potentials of the type
described in section 4, with a square lattice of unit cells each containing a single dot. In this
situation, with the potential and the lattice symmetric in x and y, the px and py bands are
degenerate along 
M . By filling the first three bands and gradually reducing the strength of the
confining potential, we can still drive the system through a transition to a metallic state, but this
now occurs when the indirect gap above the p bands closes, as can be seen from figure 4(a).
Because the highest occupied and lowest unoccupied states are well separated in reciprocal
space, the occupied states do not change nature or become strongly dependent on k as the gap
closes and the matrix elements between the periodic parts of the eigenfunctions at neighbouring
k vectors behave smoothly. The localization length increases as the bands are brought together
because the confining potential is being reduced, but it does not diverge on approach to the
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(a)

(b)

Figure 4. (a) Energy bands E(k) along the high symmetry lines (inset: Brillouin zone of the two-
dimensional square lattice). Dotted lines denote the Fermi level. (b) Localization length 〈x2〉c in
DFT and QMC as the dot confinementω is varied (left scale). Inverse DFT direct and indirect energy
gaps (right scale). Below 0.305 Ha/Bohr the system is metallic so 〈x2〉c becomes abruptly infinite.
No divergence is seen while approaching the transition from the region of stronger confinement.

transition. This emphasizes again the importance of the approaching bands being able to ‘see’
each other if anything is to be observed in 〈x2〉c.

The Kohn–Sham orbitals determined from this DFT simulation were combined with an
optimized 1- and 2-electron Jastrow factor to evaluate energies and localization lengths within
the many-electron variational quantum Monte Carlo (VMC) method, using the CASINO
program [24]. The variance minimization procedure used to optimize the Jastrow factor
resulted in close agreement between the DFT and VMC energies. As a consistency check, we
confirmed that localization lengths calculated using VMC trial functions consisting of a Slater
determinant of Kohn–Sham orbitals only, with no Jastrow factor, agreed with those obtained
using the DFT-based method of appendix A to within the statistical error of the Monte Carlo
simulation. A discussion of the errors associated with the quantum Monte Carlo measurement
of zN can be found in appendix B.

Figure 4 shows the localization length of this indirect-gap system calculated using both
DFT and VMC. As expected, decreasing the confinement by moving from right to left across
the figure results in a gradual increase in the localization length, followed by a discontinuous
jump to an infinite value when the indirect gap closes and some of the bands become partially
filled. As discussed in appendix B, it is difficult to evaluate very small values of zN (and hence
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very large localization lengths) using VMC because the statistical errors begin to overwhelm
the result. It is clear, however, that the VMC localization length is shorter than the DFT
localization length and appears to track it. To the extent that it is possible to judge, it appears
that the DFT and VMC localization lengths jump discontinuously to infinity at the same point,
presumably because the VMC Slater determinant is constructed using the occupied set of
DFT orbitals, which changes discontinuously when the DFT gap closes. If the orbitals in the
VMC determinant had been chosen to minimize the VMC energy, the VMC transition would
presumably have occurred at a smaller value of ω.

The difference between the localization lengths obtained in DFT and VMC has a simple
interpretation in terms of the size of the correlation hole produced by including a Jastrow factor.
In systems with open boundary conditions, Resta [21] showed that the localization length
could be related (in a considerably simpler manner than is possible when periodic boundary
conditions are used) to the form of the exchange–correlation hole nxc(r, r′):

〈r 2
α〉 = −1

2N

∫

dr
∫

dr′(rα − r ′
α)

2n(r)nxc(r, r′). (39)

In DFT, where the wavefunction is a single Slater determinant, the exchange–correlation hole
has to be replaced by the exchange hole (calculated using the DFT orbitals):

〈r 2
α〉x = −1

2N

∫

dr
∫

dr′(rα − r ′
α)

2n(r)nx(r, r′). (40)

Assuming, as is normally the case, that the one-electron density n(r) is almost the same in the
correlated calculation as in the uncorrelated calculation, this gives

〈r 2
α〉x − 〈r 2

α〉 ≈ 1

2N

∫

dr n(r)
∫

dr′′ (r ′′
α )

2 nc(r, r + r′′). (41)

The correlation hole nc(r, r+ r′′) is negative when |r′′| is small but integrates to zero, implying
that it must be mostly positive when |r′′| is large. The (r ′′

α )
2 factor in equation (41) lends weight

to the large |r′′| region of the integral, and so one would expect 〈r 2
α〉x − 〈r 2

α〉 to be positive in
most cases. In other words, the VMC calculation of the localization length, which includes
some of the effects of correlation via the Jastrow factor, ought to yield a smaller result than
the exchange-only DFT calculation. Indeed, as seen from the difference between the DFT
and VMC results for 〈x2〉c in figure 4(b), the left-hand side of equation (41) in this system
has a value of around 0.7, implying that the root-mean-square radius of the correlation hole is
0.8–0.9 Bohr.

5.3. Graphene structure in a hexagonal lattice

The hexagonal lattice model of a graphene sheet provides a realistic example in which a direct
gap can be tuned down to zero. Real graphene consists of an equilateral triangular (hexagonal)
two-dimensional lattice with a basis of two carbon atoms, labelled A and B in figure 5(a)
and four valence electrons per atom. Three electrons per atom form strong bonds with their
nearest neighbours, leaving the electronic properties dominated by the one electron per atom
in the π bonds. These form a bonding π band and anti-bonding π∗ band. A tight-binding
analysis involving just these bands, as described in [22, 23], demonstrates the main features of
the bandstructure: the two electrons per primitive cell fill the π band, which touches the π∗
band at the corners of the hexagonal Brillouin zone, labelled K in figure 5(b). Graphene is thus
a semiconductor with a zero gap and has interesting transport properties caused by the zero
density of states at the Fermi level. Since the π band is fully occupied, its Wannier functions
might be expected to be localized; on the other hand, since the band gap is zero, the upper
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Figure 5. (a) The structure of the graphene-like model, showing the lattice vectors a1, a2 of the
primitive cell (top), the lattice vectors a′

1, a′
2 of the larger rectangular cell used for simplicity

(bottom) and the sites A and B on which the potential can be varied. (b) The Brillouin zone of
the graphene-like model showing the reciprocal lattice vectors b1, b2 and the high symmetry k-
points K, M and �. (c) The external potential of the graphene-like model for a = 10, Vd = 3,
ρ = 5 and � = 0. The dotted line encloses one rectangular unit cell.

bound on the localization length provided by the conductivity formula of Souza, Wilkens, and
Martin (equation (52) of [7]) is infinite.

If the potential is modified so that the energies of the two sites in the primitive cell are no
longer equivalent, a gap opens up at the Fermi energy and grows in proportion to the difference
of the on-site energies. We model this by placing Gaussian dots of the form

VA(r) = −Vd exp(−|r − rA|2/ρ2) (42)

VB(r) = −(1 +�)Vd exp(−|r − rB|2/ρ2) (43)

on the B sites. Figure 5 shows the form of this potential when � = 0.
At finite � there is an energy gap caused by the attraction of the electrons to the lower-

energy B sites. As� → 0, the energy gap reduces to zero and the localization length increases,
as shown in figure 6. The value of zN at � = 0 remains non-zero (and hence the localization
length remains finite) for all practical system sizes. It is unclear whether the touching of the
valence and conduction bands at a single point in k space is sufficient to force zN to tend to
zero as the system size tends to infinity.

6. Conclusions

This paper began by offering a variation on previous presentations of the theory of localization
lengths in periodic systems, highlighting the connection to many-body Wannier functions. By
considering the decomposition of the many-body wavefunction of an insulator into localized
clusters of correlated Wannier functions that do not overlap in configuration space, it also
provided a new justification of the standard single-point formulae used in the modern theory of
polarization.

Our calculations of localization lengths in model quasi-one-dimensional periodic and two-
dimensional periodic systems revealed several new effects. In particular, they showed how
the symmetry properties of the bands that cross at an insulator-to-metal transition determine
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Figure 6. Localization length 〈x2〉c as � is reduced to 0, at which point there is a transition to a
semimetallic state. Available system sizes up to the Nk = 36×36 system shown here are insufficient
to resolve whether the localization length is truly diverging as the semimetallic state is approached.
Even for � = 0 a finite value of 〈x2〉c is observed at all practical system sizes.

whether or not the localization length diverges smoothly or jumps suddenly to infinity. Our
results for a range of direct-gap and indirect-gap insulator-to-metal transitions in one and two
dimensions show that the localization length does not diverge unless the gap that is closing
is direct and the two bands have the same symmetry at the crossing point. Since bands of the
same symmetry do not in general cross, this suggests that it will be difficult to observe diverging
localization lengths associated with insulator-to-metal transitions in real systems.

We have shown using variational Monte Carlo simulations that localization lengths in
correlated systems behave in broadly the same way as in one-electron methods. Despite the
many-particle nature of the operator that yields zN , the localization length in VMC is largely
a one-electron property, reflecting the nature of the one-electron orbitals used to construct the
determinantal part of the Slater–Jastrow trial function. In strongly correlated solids, where the
simple Slater–Jastrow form may be inadequate, more interesting behaviour may be observed.
Finally, we explained how the difference between the localization length calculated in DFT and
that calculated using a fully correlated method provides an approximate measure of the range
of the correlation hole.

Appendix A. Evaluation of zN in a plane-wave basis

Localization lengths are calculated from the one-electron Bloch functions using the method
described in [2]. In this approach, the many-body wavefunction ˜� in equation (29) is a Slater
determinant of single-particle orbitals and the expectation value 〈˜�|e−iδkα ·˜X|˜�〉 is expressed
as 〈˜�|˜�〉, where ˜� is a Slater determinant of the orbitals ψnk(r j ) of ˜� , each multiplied
by e−iδkα ·r j . The overlap of two Slater determinants is a determinant of the overlaps of the
individual orbitals and as shown in [2], the only terms 〈ψnk|eiδkα ·r|ψn′k′ 〉 of this determinant
which survive the integration over the whole system are those for which k′ = k + δkα + G,
where G is a primitive reciprocal lattice vector (which may be zero). This makes the matrix
very sparse indeed. The determinant can be factorized as

〈

˜�
∣

∣e−iδkα ·˜X∣

∣˜�
〉 =

∏

k

det S(k), (A.1)
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where Snn′(k) is a matrix of overlaps between the periodic parts of the Bloch functions at points
k and k + δkα + G. If both k and k + δkα lie within the Brillouin zone (so that G = 0), then

Snn′(k) = 〈unk| un′k+δkα
〉

. (A.2)

If k lies inside the Brillouin zone but k + δkα lies outside, then

Snn′(k) = 〈ψnk| e−iδkα ·r ∣

∣ψn′k+δkα−G
〉

= 〈unk| e−iG·r ∣

∣un′k+δkα−G
〉

, (A.3)

where G is chosen such that k + δkα − G lies inside the Brillouin zone (because that was the
state included in the original Slater determinant). In a plane-wave basis, the matrix elements
can be evaluated directly from the plane-wave coefficients using Parseval’s relation, as:

Snn′(k) =
∑

G′
c∗

nk(G
′)cn′k+δkα−G(G′ + G), (A.4)

where G is the reciprocal lattice vector that brings k + δkα back into the first Brillouin zone
if required. This expression allows very efficient calculation of zN and thus the localization
lengths.

Appendix B. Statistical errors on localization lengths within QMC

The form of equation (29) is well suited to evaluating the localization length within the
framework of quantum Monte Carlo [19] and has been applied previously [9, 13]. As with
the evaluation of any quantity with Monte Carlo methods, there is an associated statistical error
and some examination of its behaviour is required, especially in cases where the localization
length is large. In the simplest QMC technique, variational Monte Carlo, expectation values are
evaluated by using the Metropolis algorithm to sample ‘configurations’ C = (r1, r2, . . . , rN )

of electron positions distributed according to the probability distribution defined by the trial
wavefunction. The expectation value of the many-body phase operator in equation (29) is
evaluated by taking the sum of the electron coordinates X(C) = r1 + r2 + · · · + rN for each
sampled configuration C , calculating the quantity

zN (C) = e−iδkα ·X(C), (B.1)

and averaging over a sufficient number M of statistically independent configurations to obtain:

zN = 1

M

M
∑

m=1

zN (Cm). (B.2)

As M tends to infinity, the sample mean zN tends to zN and the localization length can be
obtained from the formula

〈r 2
α〉c = − 1

N

˜A2
α

(2π)2
ln |zN |2 ≈ − 1

N

˜A2
α

(2π)2
ln |zN |2. (B.3)

The complication is that zN (Cm) is a complex number whose modulus is always unity but
whose mean zN is very small if the localization length is large. To ensure the result is not
swamped by the statistical error σ|zN | in |zN |, the number of configurations M must be large
enough that σ|zN | � |zN |.

The error in the localization length can be estimated as follows. Given a complex random
variable such as zN = x N + i y N , where x N and y N are statistically independent real random
variables with population mean values xN and yN , σx N � xN and σyN

� yN , it is easy to show
that

σln(|zN |2) = σln(x2
N +y2

N )
≈

√

4x2
Nσ

2
x N

+ 4y2
Nσ

2
yN

x2
N + y2

N

. (B.4)
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Assuming that the M individual readings xN (C) and yN (C) used to calculate the sample mean
values x N and yN are uncorrelated, σ 2

x N
= σ 2

xN
/M and σ 2

yN
= σ 2

yN
/M , so

σln(|zN |2) ≈
√

4x2
Nσ

2
xN

+ 4y2
Nσ

2
yN√

M(x2
N + y2

N )
, (B.5)

where σxN and σyN are the errors in a single reading xN (C) or yN (C). (For metallic systems
with a small number of electrons in the conduction band or holes in the valence band, the
values of zN (C) from configuration to configuration are very strongly correlated and it takes
many more than M VMC steps to accumulate M uncorrelated VMC samples. This occurs
because the values of zN (C) depend strongly on the current positions of the ‘extra’ or ‘missing’
electrons in the cell.) The error in a single reading of zN can be estimated by assuming its mean
is in fact zero and that its possible values are distributed uniformly around the unit circle in the
complex plane, so that

σ 2
xN

= σ 2
yN

= 1

2π

∫ 2π

0
cos2 θ dθ = 1

2
. (B.6)

Finally, combining equations (B.5) and (B.6) with equation (B.3), we obtain

σ〈r2
α 〉c

=
˜A2
α

√
2

(2π)2 N |zN |√M
. (B.7)

Since 〈r 2
α〉c = −κ ln |zN |2, where κ is a constant, |zN | approaches zero-like e−〈r2

α 〉c/2κ as 〈r 2
α〉c

tends to infinity, as we might expect at an appropriate type of insulator-to-metal transition. It
then requires exponentially longer runs to achieve a given error bar on 〈r 2

α〉c.
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